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A Reéiprocity Theorem for the In-
teraction of Eleetrcmagnetic Plane
Waves with a One-Dimensional
Inhomogeneous Slab*

The geometry of the problem is shown
in Fig. 1. A plane wave, varying in time as
e 7t with components Eq| and E;y=E;| is
incident at an angle 8 upon an inhomogene-
ous slab at the boundary z=0. The complex
index of refraction of the medium, n(z) and
its derivative varies continuously in a
direction normal to the boundaries. E,|| and
E,, are reflected components, and E,| and
E,, are transmitted components of the elec-
tric vector. Comparison of these solutions
with those generated by inverting the slab
will establish a reciprocity criteria. This
inversion procedure is equivalent to an-
alyzing two-way transmission through a
given inhomogeneous slab.
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Fig. 1.

Stratton! has shown that the solutions to
the wave equation are uniquely described
by those components of the electric vector
which are perpendicular to and parallel to
the plane of incidence, which is that plane
containing the propagation vector, k, and
the vector normal to the boundaries of the
slab. Since the parallel component of the
electric vector is related to the y component
of the magnetic vector, H,, the properties
are completely defined by the wave equa-
tions for E, and H,. These equations for a
medium which is inhomogeneous along z are

Kk 210) + k?n2(z) — sin?0]E,(z) =0 (1)
dz?
d2H ,(z) 1 dn?(z) dH,(2)
dz n(z) dsz dz
+ k?[n2(z) — sin? 0lH,(2) = 0. (2)

The solutions to these equations are of the
form

* Received April 19, 1963. After this derivation
was completed, it was discovered that a reciprocity
jelationship was stated for a plane wave normally
incident upon an N-layer dielectric (R. Hollis,

- “Reciprocal relationships in an =n-slab dielectric,”

Proc. IRE (Correspondence), vol. 49, p. 1579;
October, 1961). This paper presents a more general
picture by considering continuous variation of the
material properties and angle of incidence.

1§, A. Stratton, “Electromagnetic Theory,”
McGraw-Hiil Book Company, Inc., New York, N. Y.
p. 492; 1941,
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where Ey, and H,, are the amplitudes of the
incident E and H vectors and the C's are
constants. Continuity of the tangential com-
ponents of E and H at z=0 and z=2z,, lead
to the following boundary conditions for (1)
and (2):
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1(0)  u2(0) -1 0 J1Cy 1
1'(0)  u'(0). jkocosd. 0 C. _ |dkocose 4
nlw) @) 0 ST LE | I @
uy'(20) 15’ (20) ] — jkg cos Geikoz cosb |\ T 0
71(0)  2(0) -1 0 q1(C, 1
70'(0)  2.'(0) jkon?(0) cosd 0 Ci| _ |jken®(0) cos@
v1(20)  v2(20) 0 — gikoz c0s R B 0 ’ ®
v (20) 2 (20) 0 —7kon®(z;) cos Geikom cos_} | T 0 I
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The R’s and T's are the complex reflec-
tion and transmission coefficients, respec-
tively; and &, is the wave number of the
incident wave. A medium whose index of
refraction is n*(z) results in identical bound-
ary conditions except the R's, T's, (s, u’s,
v's, and »’s are superscripted by a star (*).
The index of refraction, n*(z) of a slab which
is inverted may be defined in terms of the
given value of #(z) such that n*(z) =n(z,—2z).
Consequently, the solutions of the inverted
slab become
wi*(z) = w120 — 3); u2*(2) = wa(z9 — 2)
7*(z) =120 —2); v2*(z) = v2(30 — 2), (6)
and the boundary conditions for the starred
solutions become
1:(0)  u2(0) 0 —eikoz oo ) (Cy* 0
u'(0)  u/(0) 0 Jkocos@eikozacost || Oyt 0 1
() ) —1 0 R } ! , @
w(20)  u2'(20) —jkocost 0 J\Te* —jkocos @
2(0)  72(0) 0 —eikompcosf Ok 0 ]
w'(0) v/'(0) 0 Flen?(0) cos geitozs o 1O 0 o
11(z0)  22(z0) -1 0 R 1 ®
2'1’(20) 2/ (20) “jkoﬂz(Zo) cos 8 0 A1T* —jkonz(zo) cos @
Let the determinants of the matrix equa-
tions (4), (5), (7), and (8) be A, Ay, Ar*, and
Aq*, respectively. Expansion of the determi-
nants shows that A= —A* and Ay= —A*.
The reflection and transmission coefficients
can be solved in terms of A; and A;; however,
the following difference relationships are the
quantities of interest:
. 11(z0)  w2(20) () ux(0)
AT—T*=—2kcosO%| - 2 ()]
(T = T2%) = = Zgko W w'G) || w© )
21(20)  va(20) | 21(0)  22(0) |
ATl — TI*) = — 25k cosog 20) — n2(z0) z 10
2( il | ) -JRo n ( ) 111'(20) 'U‘zl(Zo) l 0 '01'(0) z“21(0) l ( )
. ) u(0)  u2(0) u1(z0)  2(30)
A{RL — R1*) = — 2jk cosﬂef"ﬂzﬂms’«s — % 11)
Ry = R = = 2k W) we) | WO w© (
. ) 2(0)  72(0) 21(20)  72(30)
A(R| — RI*) = — 2jkg cos geitoz Wiggnz 0 — n*(zp) ‘2 . 12
( Ik © ©'(z0)  ©o(30) ‘ "1 u(0) /(0) a2
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From Abel's formula,? the Wronskians of (1)

and (2) are, respectively

@Xz) s(2)
‘u;’ (@) u'(2

{ n(z) 12(2)
w'(z) v/ (2)
Therefore,

= const.;

= const.

X exp (fo‘ d[ln n’(z)])

= const. X
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TL.=T* Ti=Tp (14)
u(0)  u(0)
R =R* 'f}
+ + ! ul'(zo) 742'(20)

| wur(z0)  #2(20)
T w'0) w'(0)

electromagr'l’etic waves through a one-
dimensional inhomogeneous plasma is inde-
pendent of the direction of transmission. On
the other hand, the reflection coefficients, in
general, do not necessarily conform to a
reciprocity relationship. These results were
checked by running a few cases on a comput-
ing machine program developed at Langley.

. 71(0)  2(0) C. T. SwiFt
Riy=RI* ifn*0)) , NASA
kY (ZO) V2 (ZO) ) : § A .
) A/ /'4‘ Langley Research Center
— 2 nlz) 7 15 Langley Station, Hampton, Va.
n?(z0) , B .| )
(13) N (0) V2 (0)
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dence, and polarization, the transmission of  N.7J., pp. 31-35; 1957.
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